Exercise 2.3.4

Consider

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

subject to u(0,t) = 0, u(L,t) = 0, and u(x,0) = f(x).

- (a) What is the total heat energy in the rod as a function of time?
- (b) What is the flow of heat energy out of the rod at x = 0? at x = L?
- (c) What relationship should exist between parts (a) and (b)?

Solution

The solution to this initial boundary value problem was found in Exercise 2.3.3(e).

$$u(x,t) = \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_0^L f(r) \sin \frac{n\pi r}{L} \, dr \right] \exp\left(-\frac{kn^2\pi^2}{L^2}t\right) \sin \frac{n\pi x}{L}$$

Note that k is the thermal diffusivity and that

$$k = \frac{K_0}{\rho c},$$

where K_0 is the thermal conductivity, ρ is the mass density, and c is the specific heat.

Part (a)

The total heat energy in the rod is obtained by integrating the thermal energy density e(x,t) over the rod's volume V. (A is the rod's cross-sectional area.)

$$\begin{split} q(t) &= \int_{V} e(x,t) \, dV \\ &= \int_{0}^{L} e(x,t) (A \, dx) \\ &= \int_{0}^{L} \rho cu(x,t) (A \, dx) \\ &= \rho cA \int_{0}^{L} u(x,t) \, dx \\ &= \rho cA \int_{0}^{L} \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n\pi r}{L} \, dr \right] \exp\left(-\frac{kn^{2}\pi^{2}}{L^{2}} t \right) \sin \frac{n\pi x}{L} \, dx \\ &= \rho cA \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n\pi r}{L} \, dr \right] \exp\left(-\frac{kn^{2}\pi^{2}}{L^{2}} t \right) \int_{0}^{L} \sin \frac{n\pi x}{L} \, dx \\ &= \rho cA \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n\pi r}{L} \, dr \right] \exp\left(-\frac{kn^{2}\pi^{2}}{L^{2}} t \right) \frac{L[1 - (-1)^{n}]}{n\pi} \\ &= \frac{2\rho cA}{\pi} \sum_{n=1}^{\infty} \left[\frac{1 - (-1)^{n}}{n} \int_{0}^{L} f(r) \sin \frac{n\pi r}{L} \, dr \right] \exp\left(-\frac{kn^{2}\pi^{2}}{L^{2}} t \right) \frac{L[1 - (-1)^{n}]}{n\pi} \end{split}$$

www.stemjock.com

Notice that if n is even, then the summand is zero. This formula can thus be simplified (that is, made to converge faster) by summing over the odd integers only. Substitute n = 2m - 1 in the sum, where m is another integer.

$$q(t) = \frac{2\rho cA}{\pi} \sum_{2m-1=1}^{\infty} \left[\frac{2}{2m-1} \int_0^L f(r) \sin \frac{(2m-1)\pi r}{L} \, dr \right] \exp\left(-\frac{k(2m-1)^2 \pi^2}{L^2} t\right)$$

Therefore,

$$q(t) = \frac{4\rho cA}{\pi} \sum_{m=1}^{\infty} \left[\frac{1}{2m-1} \int_0^L f(r) \sin \frac{(2m-1)\pi r}{L} \, dr \right] \exp\left(-\frac{k(2m-1)^2 \pi^2}{L^2} t\right).$$

Part (b)

According to Fourier's law of conduction, the heat flux is

$$\phi = -K_0 \frac{\partial u}{\partial x}.$$

Assuming that the temperature u(x,t) is continuous, the infinite series can in fact be differentiated term-by-term because u(0,t) = 0 and u(L,t) = 0. The heat fluxes at x = 0 and x = L are then

$$\begin{split} \phi|_{x=0} &= -K_0 \frac{\partial u}{\partial x} \bigg|_{x=0} \\ &= -K_0 \frac{\partial}{\partial x} \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_0^L f(r) \sin \frac{n\pi r}{L} dr \right] \exp\left(-\frac{kn^2 \pi^2}{L^2} t \right) \sin \frac{n\pi x}{L} \bigg|_{x=0} \\ &= -K_0 \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_0^L f(r) \sin \frac{n\pi r}{L} dr \right] \exp\left(-\frac{kn^2 \pi^2}{L^2} t \right) \frac{\partial}{\partial x} \sin \frac{n\pi x}{L} \bigg|_{x=0} \\ &= -K_0 \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_0^L f(r) \sin \frac{n\pi r}{L} dr \right] \exp\left(-\frac{kn^2 \pi^2}{L^2} t \right) \left(\frac{n\pi}{L} \right) \\ &= -\frac{2\pi K_0}{L^2} \sum_{n=1}^{\infty} \left[n \int_0^L f(r) \sin \frac{n\pi r}{L} dr \right] \exp\left(-\frac{kn^2 \pi^2}{L^2} t \right) \\ \phi|_{x=L} &= -K_0 \frac{\partial u}{\partial x} \bigg|_{x=L} \\ &= -K_0 \frac{\partial}{\partial x} \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_0^L f(r) \sin \frac{n\pi r}{L} dr \right] \exp\left(-\frac{kn^2 \pi^2}{L^2} t \right) \sin \frac{n\pi x}{L} \bigg|_{x=L} \\ &= -K_0 \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_0^L f(r) \sin \frac{n\pi r}{L} dr \right] \exp\left(-\frac{kn^2 \pi^2}{L^2} t \right) \frac{\partial}{\partial x} \sin \frac{n\pi x}{L} \bigg|_{x=L} \\ &= -K_0 \sum_{n=1}^{\infty} \left[\frac{2}{L} \int_0^L f(r) \sin \frac{n\pi r}{L} dr \right] \exp\left(-\frac{kn^2 \pi^2}{L^2} t \right) \left[(-1)^n \frac{n\pi}{L} \right] \\ &= \frac{2\pi K_0}{L^2} \sum_{n=1}^{\infty} \left[n(-1)^{n+1} \int_0^L f(r) \sin \frac{n\pi r}{L} dr \right] \exp\left(-\frac{kn^2 \pi^2}{L^2} t \right) \left[(-1)^n \frac{n\pi}{L} \right] \end{aligned}$$

www.stemjock.com

Part (c)

The relationship between the results in part (a) and part (b) is obtained by integrating both sides of the PDE with respect to x from 0 to L.

$$\int_0^L \frac{\partial u}{\partial t} \, dx = \int_0^L k \frac{\partial^2 u}{\partial x^2} \, dx$$

Bring the time derivative outside the integral on the left and evaluate the integral on the right.

$$\frac{d}{dt} \int_0^L u(x,t) \, dx = k \frac{\partial u}{\partial x} \Big|_{x=0}^{x=L}$$
$$= k \left[\frac{\partial u}{\partial x} (L,t) - \frac{\partial u}{\partial x} (0,t) \right]$$
$$= \frac{K_0}{\rho c} \left[\frac{\partial u}{\partial x} (L,t) - \frac{\partial u}{\partial x} (0,t) \right]$$

Multiply both sides by ρcA and distribute K_0 .

$$\rho c A \frac{d}{dt} \int_0^L u(x,t) \, dx = A \left[K_0 \frac{\partial u}{\partial x}(L,t) - K_0 \frac{\partial u}{\partial x}(0,t) \right]$$
$$\frac{d}{dt} \left[\rho c A \int_0^L u(x,t) \, dx \right] = A \left[-K_0 \frac{\partial u}{\partial x}(0,t) \right] - A \left[-K_0 \frac{\partial u}{\partial x}(L,t) \right]$$

Therefore,

$$\frac{dq}{dt} = A\phi|_{x=0} - A\phi|_{x=L} \,.$$