Exercise 2.3.4

Consider

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}},
$$

subject to $u(0, t)=0, u(L, t)=0$, and $u(x, 0)=f(x)$.
(a) What is the total heat energy in the rod as a function of time?
(b) What is the flow of heat energy out of the rod at $x=0$? at $x=L$?
(c) What relationship should exist between parts (a) and (b)?

Solution

The solution to this initial boundary value problem was found in Exercise 2.3.3(e).

$$
u(x, t)=\sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

Note that k is the thermal diffusivity and that

$$
k=\frac{K_{0}}{\rho c},
$$

where K_{0} is the thermal conductivity, ρ is the mass density, and c is the specific heat.

Part (a)

The total heat energy in the rod is obtained by integrating the thermal energy density $e(x, t)$ over the rod's volume V. (A is the rod's cross-sectional area.)

$$
\begin{aligned}
q(t) & =\int_{V} e(x, t) d V \\
& =\int_{0}^{L} e(x, t)(A d x) \\
& =\int_{0}^{L} \rho c u(x, t)(A d x) \\
& =\rho c A \int_{0}^{L} u(x, t) d x \\
& =\rho c A \int_{0}^{L} \sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L} d x \\
& =\rho c A \sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \int_{0}^{L} \sin \frac{n \pi x}{L} d x \\
& =\rho c A \sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \frac{L\left[1-(-1)^{n}\right]}{n \pi} \\
& =\frac{2 \rho c A}{\pi} \sum_{n=1}^{\infty}\left[\frac{1-(-1)^{n}}{n} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)
\end{aligned}
$$

Notice that if n is even, then the summand is zero. This formula can thus be simplified (that is, made to converge faster) by summing over the odd integers only. Substitute $n=2 m-1$ in the sum, where m is another integer.

$$
q(t)=\frac{2 \rho c A}{\pi} \sum_{2 m-1=1}^{\infty}\left[\frac{2}{2 m-1} \int_{0}^{L} f(r) \sin \frac{(2 m-1) \pi r}{L} d r\right] \exp \left(-\frac{k(2 m-1)^{2} \pi^{2}}{L^{2}} t\right)
$$

Therefore,

$$
q(t)=\frac{4 \rho c A}{\pi} \sum_{m=1}^{\infty}\left[\frac{1}{2 m-1} \int_{0}^{L} f(r) \sin \frac{(2 m-1) \pi r}{L} d r\right] \exp \left(-\frac{k(2 m-1)^{2} \pi^{2}}{L^{2}} t\right)
$$

Part (b)

According to Fourier's law of conduction, the heat flux is

$$
\phi=-K_{0} \frac{\partial u}{\partial x} .
$$

Assuming that the temperature $u(x, t)$ is continuous, the infinite series can in fact be differentiated term-by-term because $u(0, t)=0$ and $u(L, t)=0$. The heat fluxes at $x=0$ and $x=L$ are then

$$
\begin{aligned}
\left.\phi\right|_{x=0} & =-\left.K_{0} \frac{\partial u}{\partial x}\right|_{x=0} \\
& =-\left.K_{0} \frac{\partial}{\partial x} \sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}\right|_{x=0} \\
& =-\left.K_{0} \sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \frac{\partial}{\partial x} \sin \frac{n \pi x}{L}\right|_{x=0} \\
& =-K_{0} \sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\left(\frac{n \pi}{L}\right) \\
& =-\frac{2 \pi K_{0}}{L^{2}} \sum_{n=1}^{\infty}\left[n \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \\
\left.\phi\right|_{x=L} & =-\left.K_{0} \frac{\partial u}{\partial x}\right|_{x=L} \\
& =-\left.K_{0} \frac{\partial}{\partial x} \sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}\right|_{x=L} \\
& =-\left.K_{0} \sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) \frac{\partial}{\partial x} \sin \frac{n \pi x}{L}\right|_{x=L} \\
& =-K_{0} \sum_{n=1}^{\infty}\left[\frac{2}{L} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right)\left[(-1)^{n} \frac{n \pi}{L}\right] \\
& =\frac{2 \pi K_{0}}{L^{2}} \sum_{n=1}^{\infty}\left[n(-1)^{n+1} \int_{0}^{L} f(r) \sin \frac{n \pi r}{L} d r\right] \exp \left(-\frac{k n^{2} \pi^{2}}{L^{2}} t\right) .
\end{aligned}
$$

Part (c)

The relationship between the results in part (a) and part (b) is obtained by integrating both sides of the PDE with respect to x from 0 to L.

$$
\int_{0}^{L} \frac{\partial u}{\partial t} d x=\int_{0}^{L} k \frac{\partial^{2} u}{\partial x^{2}} d x
$$

Bring the time derivative outside the integral on the left and evaluate the integral on the right.

$$
\begin{aligned}
\frac{d}{d t} \int_{0}^{L} u(x, t) d x & =\left.k \frac{\partial u}{\partial x}\right|_{x=0} ^{x=L} \\
& =k\left[\frac{\partial u}{\partial x}(L, t)-\frac{\partial u}{\partial x}(0, t)\right] \\
& =\frac{K_{0}}{\rho c}\left[\frac{\partial u}{\partial x}(L, t)-\frac{\partial u}{\partial x}(0, t)\right]
\end{aligned}
$$

Multiply both sides by $\rho c A$ and distribute K_{0}.

$$
\begin{gathered}
\rho c A \frac{d}{d t} \int_{0}^{L} u(x, t) d x=A\left[K_{0} \frac{\partial u}{\partial x}(L, t)-K_{0} \frac{\partial u}{\partial x}(0, t)\right] \\
\frac{d}{d t}\left[\rho c A \int_{0}^{L} u(x, t) d x\right]=A\left[-K_{0} \frac{\partial u}{\partial x}(0, t)\right]-A\left[-K_{0} \frac{\partial u}{\partial x}(L, t)\right]
\end{gathered}
$$

Therefore,

$$
\frac{d q}{d t}=\left.A \phi\right|_{x=0}-\left.A \phi\right|_{x=L}
$$

